Compare commits

...

2 commits

Author SHA1 Message Date
XOR
289de54e7e Removed memory leaks, minor bug and security fixes 2023-04-05 00:00:46 +02:00
XOR
6449cb0374 the hashtable now stores any type of data
As it just stores a void pointer
2023-04-03 12:17:31 +02:00

185
main.c
View file

@ -1,81 +1,185 @@
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <time.h>
#include <limits.h>
#include <assert.h>
#define WORD 32
#define TRANSFORM_TABLE_MAX_RAND 4294967296
#define DELTA 1
// If set to 1, all strings will be hashed to SIMULATED_COLLISON_HASH
#define SIMULATE_COLLISIONS 0
#define SIMULATED_COLLISION_HASH 20
#ifdef __clang__
#include <builtins.h>
#define rot32_left(x, y) __builtin_rotateleft32(x, y)
#else
#define rot32_left(x, y) (x << y) | (x >> 32 - y)
#define rot32_left(x, y) (x << y) | (x >> 32 - y)
#endif
// Contains everything the functions for the hashtables need, to work with, including the hash table itself
typedef struct
{
unsigned int *transformation_table;
int *hash_table;
unsigned int table_size;
}shash_hashtable_t;
typedef struct
{
char *key;
int value;
void *data;
// gets set to 1 if another key, collides with this elemnts location
u_int8_t encountered_collision;
// On collision, this field stores, where in the hash table array the second key (with the same hash) is located
int next_key_location;
}shash_table_element_t;
void shash_init_hashtable(shash_hashtable_t *hashtable, unsigned int table_size)
} shash_table_element_t;
// Contains everything the functions for the hashtables need, to work with, including the hash table itself
typedef struct
{
// Create a random transformation table
srand(0);
//srand(time(NULL));
unsigned int *table = malloc((CHAR_MAX-CHAR_MIN)*sizeof(int));
unsigned int *transformation_table;
shash_table_element_t *hash_table;
unsigned int table_size;
} shash_hashtable_t;
for(int i = 0; i < CHAR_MAX-CHAR_MIN; i++){
table[i] = TRANSFORM_TABLE_MAX_RAND * rand() / RAND_MAX;
// Returns -1 when the hashtable is full
int get_empty_hashtable_slot(shash_hashtable_t *hashtable)
{
assert(hashtable != NULL);
for (int i = 0; i < hashtable->table_size; i++)
{
if (hashtable->hash_table[i].key == 0)
return i;
}
// Full
return -1;
}
int shash_init_hashtable(shash_hashtable_t *hashtable, unsigned int table_size)
{
// Initialize the RNG to a non-constant value, to make the output less pseudo random
srand(time(NULL));
// Create a random transformation table
unsigned int *table = malloc((CHAR_MAX - CHAR_MIN) * sizeof(int));
if(table == NULL)
{
return EXIT_FAILURE;
}
for (int i = 0; i < CHAR_MAX - CHAR_MIN; i++)
{
table[i] = TRANSFORM_TABLE_MAX_RAND * rand() / RAND_MAX;
}
hashtable->transformation_table = table;
hashtable->hash_table = malloc(table_size * sizeof(int));
hashtable->hash_table = malloc(table_size * sizeof(shash_table_element_t));
if(hashtable->hash_table == NULL)
{
return EXIT_FAILURE;
}
memset(hashtable->hash_table, 0, table_size * sizeof(shash_table_element_t));
hashtable->table_size = table_size;
return EXIT_SUCCESS;
}
unsigned int shash_hash(char *key, unsigned int len, shash_hashtable_t *hashtable)
{
//Slight variation of cyclic polynomial hasing, as described in the Paper: "Recursive Hashing functions for n-Grams" by J. D. Cohen
unsigned int hash_word = 0;
for(int i = 0; i < len; i++)
assert(hashtable != NULL);
if (SIMULATE_COLLISIONS == 1)
{
hash_word = rot32_left(hash_word, 1);
hash_word = hash_word ^ hashtable->transformation_table[key[i]];
return SIMULATED_COLLISION_HASH;
}
// Slight variation of cyclic polynomial hasing, as described in the Paper: "Recursive Hashing functions for n-Grams" by J. D. Cohen
unsigned int hash_word = 0;
for (int i = 0; i < len; i++)
{
hash_word = rot32_left(hash_word, 1);
hash_word = hash_word ^ hashtable->transformation_table[key[i]];
}
return hash_word % hashtable->table_size;
}
void shash_set(char *key, unsigned int len, int value, shash_hashtable_t *hashtable)
int shash_set(char *key, unsigned int len, void *data, shash_hashtable_t *hashtable)
{
unsigned int hash = shash_hash(key, len, hashtable);
hashtable->hash_table[hash] = value;
assert(key != NULL);
assert(data != NULL);
assert(hashtable != NULL);
unsigned int slot = shash_hash(key, len, hashtable);
// Loop to the end of the linked list
while (hashtable->hash_table[slot].encountered_collision != 0 && strcmp(hashtable->hash_table[slot].key, key) != 0)
{
slot = hashtable->hash_table[slot].next_key_location;
}
shash_table_element_t table_element =
{
.key = strndup(key, len),
.data = data};
if (hashtable->hash_table[slot].key == 0)
{
hashtable->hash_table[slot] = table_element;
return 0;
}
else
{
int empty_slot = get_empty_hashtable_slot(hashtable);
if (empty_slot != -1)
{
hashtable->hash_table[slot].encountered_collision = 1;
hashtable->hash_table[slot].next_key_location = empty_slot;
hashtable->hash_table[empty_slot] = table_element;
return 0;
}
}
// hashtable full
return -1;
}
int shash_get(char *key, unsigned int len, shash_hashtable_t *hashtable)
void *shash_get(char *key, unsigned int len, shash_hashtable_t *hashtable)
{
unsigned int hash = shash_hash(key, len, hashtable);
int value = hashtable->hash_table[hash];
return value;
assert(key != NULL);
assert(hashtable != NULL);
unsigned int slot = shash_hash(key, len, hashtable);
while (strcmp(hashtable->hash_table[slot].key, key) != 0)
{
if (hashtable->hash_table[slot].encountered_collision == 1)
{
slot = hashtable->hash_table[slot].next_key_location;
}
else
{
/* Invalid key
this return value cannot be identified as an error from outside, TODO: fix */
return NULL;
}
}
return hashtable->hash_table[slot].data;
}
void shash_destroy_hashtable(shash_hashtable_t *hashtable)
{
assert(hashtable != 0);
for(int i = 0; i < hashtable->table_size; i++)
{
if(hashtable->hash_table[i].key != NULL)
{
free(hashtable->hash_table[i].key);
}
}
free(hashtable->transformation_table);
free(hashtable->hash_table);
}
int main(void)
@ -83,11 +187,18 @@ int main(void)
// Initialize an empty hashtable
shash_hashtable_t hashtable;
shash_init_hashtable(&hashtable, 100);
// Store some data
shash_set("FOO", 3, "Hello", &hashtable);
shash_set("BAR", 3, "World!", &hashtable);
shash_set("INC", 3, 41, &hashtable);
int retrieved_val = shash_get("INC", 3, &hashtable);
printf("Stored value %d at INC\n", retrieved_val);
// And retrieve it
char *retrieved_foo = shash_get("FOO", 3, &hashtable);
char *retrieved_bar = shash_get("BAR", 3, &hashtable);
printf("%s, %s\n", retrieved_foo, retrieved_bar);
// Destroy the hashtable
shash_destroy_hashtable(&hashtable);
return 0;
}